Did not realize their 5.7 was so problematic...that cam tower leak looks like quite the flaw, a lot of skilled work to correct.
I think the early cam failure was a metallurgy issue with initial production and was just a few thousand trucks, '07 only. Have never owned one and don't read their forums though. I only know of it because the GM forums made fun of them at the time. People picked on them for not having a fully boxed frame (when GM just introduced theirs in 07, and Ford in 04), the cam failures, and the 07-only tailgate design flaw when loading ATVs.
Yes, the camshaft failures only affected the engines in early models, but that was still a population of about 30,000. The cheap, poorly designed and failure prone tailgate was a widespread issue; they "reinforced" it in later years but they're still made from thin, low grade bonded sheet metal. Failures like that really exemplify the difference between Japanese and American manufacturers; the Japanese don't have the slightest clue how Americans use their trucks, so all they can do is copy American designs and rely on second hand market research information. I guarantee they never even tried loading an ATV or motorcycle into the Tundra during development; if they had, they would have realized the failure mode immediately. Instead, they identified an opportunity to save weight/cost by "lightweighting" the tailgate and it's components, with zero insight as to why the American trucks use robust tailgate design.
As far as frames, GM was introducing their fully boxed and hydroformed frame in their all-new 2007 GMT-900 trucks at the same time that Toyota was introducing their all-new 2007 Tundra with an open c-channel frame. Another example of a foreign company completely failing to understand their target market while chasing profit opportunity instead of quality.
I still don't think the lack of torsional rigidity is a durability issue. Every truck has a max speed on that course, and the Ford's is a hell of a lot higher than the Toyota's. Could drive a Raptor down that 10mph faster and then call the regular F-150 a POS when its bed hits the cab at that speed. Or take a built desert truck down it 20mph faster and then call the Raptor a POS for the same. That course at that speed exceeded the Toyota's performance capabilities, and it failed. Looks like he hit a harmonic with it, where each impact is timed to compound the last. An '03 Ford and an '06 Chevy would probably do the same thing.
A lack of torsional rigidity is a significant durability issue because it affects more than just the system that the flex originates in. All components are rated to a fatigue cycle, which means that after a certain number of cycles, the component will exceed it's duty cycle and fail. In the case of the mild steel body panels on the Tundra, running that Ford durability test will inevitably result in a failure of the frame or it's fastened components. That translates to real world failures, which are well documented.
You are assuming that the test results are correlated to the suspension, which is not accurate. The test is designed to max out a the capability of the suspension without causing damage to the chassis. You can run a standard F-150 across that test as fast as you want, it may not retain the desired stability, but the cab will not hit the bed and the frame will not bend. Same with a Raptor or any other real truck; exceeding the suspension's capability should never result in damage to the frame and body. Toyota doesn't care about any of those things; they focus on selling based on the badge, not the quality or capability of the product.